1,245 research outputs found

    Atom-molecule Rabi oscillations in a Mott insulator

    Full text link
    We observe large-amplitude Rabi oscillations between an atomic and a molecular state near a Feshbach resonance. The experiment uses 87Rb in an optical lattice and a Feshbach resonance near 414 G. The frequency and amplitude of the oscillations depend on magnetic field in a way that is well described by a two-level model. The observed density dependence of the oscillation frequency agrees with the theoretical expectation. We confirmed that the state produced after a half-cycle contains exactly one molecule at each lattice site. In addition, we show that for energies in a gap of the lattice band structure, the molecules cannot dissociate

    CEP-stable Tunable THz-Emission Originating from Laser-Waveform-Controlled Sub-Cycle Plasma-Electron Bursts

    Full text link
    We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle field-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation

    Charaterizing RDF graphs through graph-based measures - Framework and assessment

    Get PDF
    The topological structure of RDF graphs inherently differs from other types of graphs, like social graphs, due to the pervasive existence of hierarchical relations (TBox), which complement transversal relations (ABox). Graph measures capture such particularities through descriptive statistics. Besides the classical set of measures established in the field of network analysis, such as size and volume of the graph or the type of degree distribution of its vertices, there has been some effort to define measures that capture some of the aforementioned particularities RDF graphs adhere to. However, some of them are redundant, computationally expensive, and not meaningful enough to describe RDF graphs. In particular, it is not clear which of them are efficient metrics to capture specific distinguishing characteristics of datasets in different knowledge domains (e.g., Cross Domain vs. Linguistics). In this work, we address the problem of identifying a minimal set of measures that is efficient, essential (non-redundant), and meaningful. Based on 54 measures and a sample of 280 graphs of nine knowledge domains from the Linked Open Data Cloud, we identify an essential set of 13 measures, having the capacity to describe graphs concisely. These measures have the capacity to present the topological structures and differences of datasets in established knowledge domains

    Results for the response function determination of the Compact Neutron Spectrometer

    Full text link
    The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a 'white field'(Emax ~17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~1.5 MeV to ~17 MeV. The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.Comment: Proceedings of FNDA 201
    • …
    corecore